O raciocínio combinatório



Figura 17 Quem encontra pela primeira vez esse tipo de problema pode não perceber que se trata de uma situação que envolve a multiplicação. É comum, nas primeiras tentativas, somar 3 com 4 ou listar de forma desorganizada algumas combinações de pão com recheio.

Vejamos como o problema pode ser resolvido. Para todas as combinações possíveis, precisamos pensar de maneira organizada. Isto pode ser conseguido, por exemplo, com a ajuda de uma tabela retangular.

salame queijo presunto mortadela
pão de forma pão de forma com salame pão de forma com queijo pão de forma com presunto pão de forma com mortadela
pão francês pão francês com salame pão francês com queijo pão francês com presunto pão francês com mortadela
pão italiano pão italiano com salame pão italiano com queijo pão italiano com presunto pão italiano com mortadela

Também podemos organizar a solução do problema deste outro modo:

Figura 19

Este último esquema, que lembra os galhos de uma árvore (deitada), é conhecido como árvore das possibilidades.
Tanto com a tabela retangular como com a árvore das possibilidades, podemos obter a solução do problema: contamos os tipos de sanduíche e chegamos a 12 tipos. O que não se percebe ainda é o que o problema tem a ver com a multiplicação.
Isso pode ser percebido com este raciocínio: para cada um dos tipos de pão temos 4 tipos de recheio e, portanto, 4 sanduíches diferentes; como são 3 tipos de pão, os sanduíches são 4 + 4 + 4, ou seja, 3 x 4 = 12.
Nesse raciocínio, procuramos combinar os tipos de pão com os tipos de recheio para obter todos os tipos de sanduíche. É um exemplo de racicínio combinatório, o qual leva á multiplicação.
Você pode notar que a árvore de possibilidades é uma espécie de "desenho" do raciocínio que fizemos: de cada um dos seus 3 "galhos" iniciais saem outros 4 "galhos", dando um total de 12.
Quando podemos desenhar a árvore de possibilidades ou fazer uma tabela, como no caso do problema dos sanduíches, o problema pode ser resolvido sem a multiplicação. Mas, quando as possibilidades são muitas, a multiplicação facilita os cálculos. Já imaginou desenhar a árvore se fossem 6 os tipos de pão e 12 os recheios?

miniquestao 4
Nome completo:
Seu e-mail:
No problema da padaria Regência, se fossem 6 os tipos de pães e 12 os recheios, quantos sanduíches diferentes teríamos?
Teríamos sanduíches diferentes.


Vejamos outro problema envolvendo o raciocínio combinatório.

Observe que os números 213 e 312 satisfazem as condições do problema, mas os números 311, 413 e 1123 não servem. Para resolver o problema vamos nos imaginar escrevendo um número de três algarismos, obedecendo as restrições mencionadas no problema. Ao escrever o algarismo das centenas temos 3 possibilidades.

Figura 20

Ao escrever o algarismo das dezenas não podemos usar aquele que já foi usado nas centenas. Portanto, para cada uma das maneiras de escolher o dígito das centenas temos duas maneiras de escolher o das dezenas.

Figura 21

Ao escrever o algarismo das unidades não podemos repetir nenhum dos dois que já foram usados nas centenas e dezenas. Logo, para cada uma das maneiras de escrever os dois primeiros algarismos temos uma só escolha para o último dígito.
Portanto, nas condições do problema, é possível escrever 3 x 2 x 1 = 6 números: 123, 132, 213, 231, 312 e 321.

Figura 22

No módulo 1 propusemos alguns problemas parecidos com este que acabamos de resolver. Naquela ocasião, ao resolver os problemas, não exploramos o raciocínio combinatório.

O problema seguinte é parecido com o anterior. Mas há uma diferença entre eles!

Vamos construir a árvore das possibilidades para este problema:

Temos 3 possibilidades para escolher o algarismo das centenas. Para cada uma delas, há 3 maneiras de escolher o dígito das dezenas. Portanto há 3 x 3 = 9 modos de escolher aqueles dois dígitos. Para cada uma destas 9 maneiras há 3 possibilidades de escolha para o algarismo das unidades. Portanto, nas condições do problema, é possível escrever 3 x 3 x 3 = 27 números. Na árvore das possibilidades podemos ver quais são estes números.

Figura 24

miniquestao 5
Nome completo:
Seu e-mail:
Figura 25

Madalena mora na cidade X e vai a uma festa na cidade Y. Quantos caminhos ela pode escolher para ir de X até Y?
Madalena pode escolher caminhos diferentes.


No aprendizado da multiplicação, os problemas combinatórios são um ítem importante. No entanto, em muitos desses problemas é difícil perceber a presença da multiplicação, até para nós, professores. Sugerimos então que, primeiramente, os alunos usem tabelas ou árvore de possibilidades, até descobrirem que podem resolvê-los utilizando a multiplicação.

Você tem dúvidas sobre este tópico?
Nome completo:
Seu e-mail:

Sua dúvida é:


tópico anterior tópico anterior indice geralíndice geral índice mod3índice módulo 3 próximo tópicopróximo tópico